Economic emission dispatch problems with stochastic wind power using summation based multi-objective evolutionary algorithm
نویسندگان
چکیده
In recent years, renewable energy sources such as wind energy have been used as one of the most effective ways to reduce pollution emissions. In this paper, a summation based multi-objective differential evolution (SMODE) algorithm is used to optimize the economic emission dispatch problem with stochastic wind power. The Weibull probability distribution function is used to model the stochastic nature of the wind power and the uncertainty is treated as the system constraints with stochastic variables. The algorithm is integrated with the superiority of feasible solution constraint handling technique. To validate the effectiveness of the proposed method, the standard IEEE 30-bus 6-generator test system with wind power (with/without considering losses) is studied with fuel cost and emission as two conflicting objectives to be optimized at the same time. Besides, a larger 40-generator system with wind farms is also solved by the proposed method. The results generated by SMODE are compared with those obtained using NSGAII as well as a number of techniques reported in literature. The results reveal that SMODE generates superior and consistent solutions. © 2016 Published by Elsevier Inc.
منابع مشابه
Combined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملA Multi-Objective Economic Load Dispatch Considering Accessibility of Wind Power with Here-And-Now Approach
The major problem of wind turbines is the great variability of wind power production. The dynamic change of the wind speed returns the quantity of the power injected to networks. Therefore, wind–thermal generation scheduling problem plays a key role to implement clean power producers in a competitive environment. In deregulated power systems, the scheduling problem has various objectives than i...
متن کاملDynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm
The intermittency of wind power and the large-scale integration of electric vehicles (EVs) bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED) model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimiza...
متن کاملWind Energy Uncertainties in Multi-objective Environmental/Economic Dispatch Based on Multi- objective Evolutionary Algorithm
This paper a Multi-objective Honey Bee Mating Optimization (MOHBMO) is proposed for Environmental/ Economic Power Dispatch (EED) problem. This paper proposes a new environmental/economic load dispatch model that considers cost and emission function coefficients with uncertainties and the constraints of ramp rate. Due to the environmental concerns that arise from the emissions produced via fossi...
متن کاملOptimal emergency demand response program integrated with multi-objective dynamic economic emission dispatch problem
Nowadays, demand response programs (DRPs) play an important role in price reduction and reliability improvement. In this paper, an optimal integrated model for the emergency demand response program (EDRP) and dynamic economic emission dispatch (DEED) problem has been developed. Customer’s behavior is modeled based on the price elasticity matrix (PEM) by which the level of DRP is determined for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 351 شماره
صفحات -
تاریخ انتشار 2016